Kirksville College of Osteopathic Medicine
Apply to ATSU Now
KCOM Student

Faculty and Staff

Scholarly Activity Home | List of Authors | Publications | Presentations & Abstracts
Professional Presentations e.g., CME | Grants Funded | Honors & Recognition

Publications of David S. Middlemas, Ph.D.

   
18. Kozisek ME, Middlemas DS, Bylund DB. The differential regulation of BDNF and TrkB levels in juvenile rats after four days of escitalopram and desipramine treatment. Neuropharmacology. 2008 Feb;54(2):251-7 PubMed
17.

Kozisek ME, Middlemas DS, Bylund DB. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther. 2008 Jan;117(1):30-51 PubMed

16.
Easton JB, Royer AR, Middlemas DS. 2006. The protein tyrosine phosphatase, Shp2, is required for the complete activation of the RAS/MAPK pathway by brain-derived neurotrophic factor. J Neurochem. 2006 May;97(3):834-45 PubMed
15.
Middlemas DS, Stewart CF, Kirstein MN, Poquette C, Friedman HS, Houghton PJ, Brent TP. Biochemical correlates of temozolomide sensitivity in pediatric solid tumor xenograft models. Clin Cancer Res. 2000 Mar;6(3):998-1007 PubMed
14.
Middlemas DS, Kihl BK, Moody NM. Brain derived neurotrophic factor protects human neuroblastoma cells from DNA damaging agents. J Neurooncol. 1999;45(1):27-36 PubMed
13.
McKenzie PP, Guichard SM, Middlemas DS, Ashmun RA, Danks MK, Harris LC. Wild-type p53 can induce p21 and apoptosis in neuroblastoma cells but the DNA damage-induced G1 checkpoint function is attenuated. Clin Cancer Res. 1999 Dec;5(12):4199-207 PubMed
12.
Middlemas DS, Kihl BK, Zhou J, Zhu X. Brain-derived neurotrophic factor promotes survival and chemoprotection of human neuroblastoma cells. J Biol Chem. 1999 Jun 4;274(23):16451-60 PubMed
11.
Easton JB, Moody NM, Zhu X, Middlemas DS. Brain-derived neurotrophic factor induces phosphorylation of fibroblast growth factor receptor substrate 2. J Biol Chem. 1999 Apr 16;274(16):11321-7 PubMed
10.
Srinivas RV, Middlemas D, Flynn P, Fridland A. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters.
Antimicrob Agents Chemother. 1998 Dec;42(12):3157-62 PubMed
9.
Middlemas DS, Meisenhelder J, Hunter T. Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma 1 is a substrate of the TrkB receptor. J Biol Chem. 1994 Feb 18;269(7):5458-66 PubMed
8.
Merlio JP, Ernfors P, Kokaia Z, Middlemas DS, Bengzon J, Kokaia M, Smith ML, Siesjo BK, Hunter T, Lindvall O, et al. Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron. 1993 Feb;10(2):151-64 PubMed
7.
Frisen J, Verge VM, Cullheim S, Persson H, Fried K, Middlemas DS, Hunter T,
Hokfelt T, Risling M. Increased levels of trkB mRNA and trkB protein-like immunoreactivity in the injured rat and cat spinal cord. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11282-6 PubMed
6.
Soppet D, Escandon E, Maragos J, Middlemas DS, Reid SW, Blair J, Burton LE, Stanton BR, Kaplan DR, Hunter T, et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell. 1991 May 31;65(5):895-903 PubMed
5.
Middlemas DS, Lindberg RA, Hunter T. trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol Cell Biol. 1991 Jan;11(1):143-53 PubMed
4.
Weinmaster GA, Middlemas DS, Hunter T. A major site of tyrosine phosphorylation within the SH2 domain of Fujinami sarcoma virus P130gag-fps is not required for protein-tyrosine kinase activity or transforming potential. J Virol. 1988 Jun;62(6):2016-25 PubMed
3.
Middlemas DS, Raftery MA. Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe. Biochemistry. 1987 Mar 10;26(5):1219-23 PubMed
2.
Olivera BM, McIntosh JM, Clark C, Middlemas D, Gray WR, Cruz LJ. A sleep-inducing peptide from Conus geographus venom. Toxicon. 1985;23(2):277-82 PubMed
1.
Middlemas DS, Raftery MA. Exposure of acetylcholine receptor to the lipid bilayer. Biochem Biophys Res Commun. 1983 Sep 30;115(3):1075-82 PubMed
   
Chapters in Books Return to top
10.
Middlemas DS and Houghton PJ. 2000. Preclinical models for neuroblastoma therapy. Neuroblastoma (Brodeur GM, Sawada T, Tsuchiada Y, Voute PA, Eds.) Elsevier Science, Amsterdam, pp. 393-402
9.
Middlemas DS. 1993. Receptor protein-tyrosine kinases. Methods in Neurosciences (Conn PM, Ed.), Academic Press, New York Vol,12, 139-155
8.
Hunter T, Lindberg RA, Middlemas DS, Tracy S, van der Geer P. Receptor protein tyrosine kinases and phosphatases. Cold Spring Harb Symp Quant Biol. 1992;57:25-41. Review PubMed
7.
Hunter T, Lindberg RA, Middlemas DS. Novel receptor protein-tyrosine kinases.
Adv Second Messenger Phosphoprotein Res. 1990;24:260-5
6.
Hunter T, Gould KL, Lindberg RA, Meisenhelder J, Middlemas DS, Thompson DP. 1989. Protein-tyrosine kinases and their substrates: old friends and new faces. Protein Design and the Development of New Therapeutics and Vaccine. (Poste G, Crooke ST, Eds.) Plenum Publishing Corp, New York, pp. 119-139
5.
Middlemas DS, Zabrecky JR, Raftery MA. 1986. Cholesterol interaction with and influence on the function of the nicotinic acetylcholine receptor. Molecular Architecture of Proteins and Enzymes (Bradshaw RA, Tang J, Eds.) Academic Press, New York, pp. 195-208
4.
Gray WR, Middlemas DS, Zeikus R, Olivera BM, Cruz L. 1985. Structure-activity relationships in α-conotoxins: a model. Peptides: Structure and Function (Deber CM, Hruby VJ, Kopple KD, Eds.) Pierce Chemical Company, pp. 823-832.
3.
Raftery MA, Conti-Tronconi BM, Dunn SMJ, Crawford RD, Middlemas DS. 1985. Concepts of cholinergic receptor function. Mechanisms of Receptor Regulation, (Poste G, Crooke ST, Eds.) Plenum Publishing Corporation, pp. 255-278.
2.
Raftery MA, Conti-Tronconi BM, Dunn SM, Crawford RD, Middlemas D. The nicotinic acetylcholine receptor: its structure, multiple binding sites, and cation transport properties. Fundam Appl Toxicol. 1984 Apr;4(2 Pt 2):S34-51 PubMed
1.
Raftery MA, Dunn SM, Conti-Tronconi BM, Middlemas DS, Crawford RD. The nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties. Cold Spring Harb Symp Quant Biol. 1983;48 Pt 1:21-33 PubMed