duces the maximal voluntary contraction, a necessary component for the analysis of data from the second study. Dr. Fryer’s second EMG study will compare the motor activity of normal and abnormal deep paraspinal sites previously identified by palpation. He intends to investigate the etiology of abnormal tissue texture in the medial paraspinal region and then follow this research with an exploration of the clinical significance of these sites.

Dr. Fryer is currently a member of the Scientific Advisory Board for the International Journal of Osteopathic Medicine and the Journal of Bodywork & Movement Therapies.

As the study’s co-investigator, Dr. Michael Bird provides the essential basic science/biomechanical component of this interdisciplinary research. Dr. Bird teaches Concepts of Biomechanics, Advanced Biomechanical Analyses, Research Methods in Exercise Science, Mountain Biking, and Microcomputer Applications for Truman State University. His current research at Truman involves how sport performances differ among athletes of varying skill levels and how the results of biomechanical analyses can be applied by the practitioner.

Dr. Bird received his bachelor's degree in Movement and Sport Science and his master's degree in Physical Education (specializing in Biomechanics) from Purdue University, and his doctorate in Exercise Science (also with a specialization in Biomechanics) from the University of North Carolina-Greensboro.

"This study will clarify the motor patterns of deep paraspinal muscles, and provide valid methods of EMG normalisation, necessary for comparison of muscle sites."

Using Pressure Algometry in an Electromyography Study.