The Analgesic Effect of α9/10 Toxins Does Not Involve Activation of GABA_B Receptors

Andrew Wright, B.S., James C. Baxter, M.S., and Keith S. Elmslie, Ph.D.

The Baker laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Medicine, AT Still University of Health Sciences, Kirksville, MO, 63501

Introduction: Nociception is highly regulated by the activity of voltage-gated and ligand-gated ion channels. Thus, there is great interest in developing novel pain management therapies that target these channels. One class of ion channel blockers that target α9/10 nicotinic acetylcholine channel/receptors (nAChR) has been shown in animal models to have analgesic properties, but the mechanism may involve inhibition of voltage-gated calcium (Ca_V) channels via activation of G protein-coupled GABA_B receptors. In collaboration with researchers at the University of Utah, we tested toxins targeting α9/10 nAChR to assess their effect on Ca_V current in rat sensory neurons.

Methods: Ca_V currents were recorded from dorsal root ganglion neurons isolated from Sprague Dawley rats. The modulation of this current was tested using the GABA_B receptor agonist baclofen (30 µM) to ensure the expression of these receptors in the recorded neurons and 1 µM each of the following the α9/10 toxins K14J14, K14J12, RglA, and Vc1.1. All of these toxins were isolated from cone snails.

Results and Discussion: Baclofen inhibited Ca_V current in all neurons tested, which verified the expression of GABA_B receptors. However, there was no significant effect on this current by any of the α9/10 nAChR toxins. While the K14J14 and K14K12 toxins had not been previously tested on Ca_V current, several publications from one lab had demonstrated Ca_V current inhibition by RglA and Vc1.1. It is not clear why our results differ, but the toxin concentration that we used was ~10x higher than that used previously. This, along with the baclofen-induced inhibition, suggests that an effect on Ca_V currents would have been observed if these toxins were indeed activators of GABA_B receptors.

Responsible Author: Keith Elmslie, Ph.D.; kelmslie@atsu.edu; 660.626.2384

Key words: sensory neurons; patch clamp; voltage-gated calcium channels; GABA_B receptors; nicotinic acetylcholine receptors