Impact of Exercise and Insulin on Microvascular PO$_2$ in the Diabetic Rat Soleus After Chronic Femoral Artery Ligation

William L. Sexton, Ph.D., Ladonna Shaffer, B.S., and Talon J. Anderson, M.S.

Department of Physiology, KCOM, A.T. Still University, Kirksville, MO

Background: Diabetes results in faster microvascular PO$_2$ (PO$_2_{mv}$) on-kinetics at the onset of muscle contractions reflecting an imbalance between oxygen delivery (QO$_2$) and oxygen utilization (VO$_2$). Femoral artery ligation as a model for vascular insufficiency elicits collateral growth and restoration of distal muscle flow. Exercise training enhances collateral growth after femoral ligation, while insulin should reduce the impact of diabetes.

Aim: To determine the effects of exercise training or insulin on the PO$_2_{mv}$ in the soleus muscle of diabetic rats after femoral artery ligation.

Methods: Female Sprague Dawley rats were randomly divided into three diabetic (streptozocin 50 mg/kg) groups: 1) Diabetic femoral artery ligated (DFL, n = 12), 2) Diabetic femoral ligated with exercise (DFLET, n = 14), and 3) Diabetic femoral artery ligated with insulin (DFLI, n = 12). Two wks later the left femoral artery was ligated in all rats. Exercise training and daily insulin glargine (1.6 U/100 g, sc.) were started one-week post-ligation and continued for 6 wks. After anesthesia, the soleus was exposed and stimulated (1 Hz, 6 V) over 3 minutes, while PO$_2_{mv}$ was measured at rest and during the rest-to-contraction transition using phosphorescent quenching and oxyphor G2.

Results: Insulin prevented the decrease in body weight (DFLI, 292 ± 7; DFL, 245 ± 8; DFLET, 234 ± 7 g) and soleus weight (DFLI, 176 ± 9; DFL, 143 ± 10; DFLET, 144 ± 7 mg). Glucose levels were elevated similarly in all three groups (>400 mg/dl). Resting PO$_2_{mv}$ and ΔPO$_2_{mv}$ during contractions was not different among the groups. The time delay in DFLI was shorter (8 ± 1 s) compared to DFL (15 ± 2 s) and DFLET (16 ± 1 s). Both DFLET and DFLI had faster time constants (16 ± 2; 15 ± 1 s) than DFL (30 ± 6 s). PO$_2_{mv}$ mean response time was faster in DFLET (32 ± 2 s) and DFLI (22 ± 2 s) compared to DFL (45 ± 5 s).

Conclusion: Despite receiving a suboptimal dose of insulin, the DFLI group maintained body and soleus weight without changes in blood glucose. While there is evidence for developing collateral circulation (high resting PO$_2_{mv}$) the faster PO$_2_{mv}$ kinetics in the DFLI and DFLET may reflect training and insulin associated maintenance of muscle metabolism (VO$_2$) in excess of the recovering oxygen delivery (QO$_2$). (Supported by Graduate Program Committee, KCOM – ATSU)

Responsible Author: William L. Sexton, Ph.D., wsexton@atsu.edu; 660-626-2324

Key words: diabetes; peripheral vascular disease; exercise training; insulin