Cognitive-Motor Interference in Persons with Parkinson Disease

Tara L. McIsaac, PhD, PT

Associate Professor of Physical Therapy A.T. Still University Arizona School of Health Sciences

> October 11, 2014 ACRM - Toronto

Learning Objectives

At the end of this session the participant will be able to:

- Discuss the cognitive and motor deficits seen in Parkinson disease (PD)
- Understand the impact of cognitive and motor deficits in PD on daily activities
- Discuss the basis for cognitive-motor interaction and the possible rationale

Outline

- Parkinson disease: Background
- Changes in Cognition
- Cognitive-Motor Interaction Theoretical Frameworks
- Evidence of Cognitive-Motor Interference
- Rehabilitation for CMI

Outline

- Parkinson disease: Background
- Changes in Cognition
- Cognitive-Motor Interaction Theoretical Frameworks
- Evidence of Cognitive-Motor Interference
- Rehabilitation for CMI

Parkinson disease

- 1 to 1.5 million in U.S.
- 6 to 10 million globally
- 60,000 new cases diagnosed each year in U.S.
- Dopaminergic depletion in basal ganglia, disrupts internal balance in basal ganglia activity (Obeso 2008)
 - Clumps of α-synuclein protein, Lewy bodies
- Affects motor and non-motor systems

Cardinal motor signs of PD

- Tremor, rest & postural
 - slow frequency (4-6 Hz), supination/pronation
- Rigidity
- Akinesia (lack of) / Bradykinesia (slowed) / Hypokinesia (small)
- Postural instability
 - retropulsion
 - festination of steps (also speech & thought)
 - freezing of gait (FoG)

The Parkinson's Complex

Parkinsonism Substantia Nigra

Pons Basal Forebrain

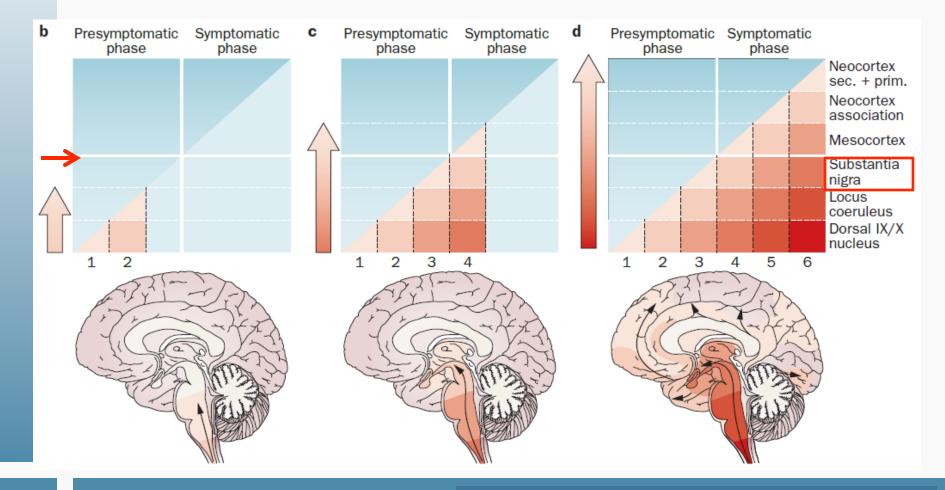
44444444

Medulla

Amygdala H

Hypothalamus

Olfactory Bulb Spinal Cord (intermediolateral column)


Peripheral Autonomic Nervous System (heart, intestinal track, bladder) Neocortex

Olfactory Cortex

Temporal Cortex

Langston 2006, Annals of Neurology

Braak's 6 Stages of Pathology in PD onset up to 10-15 years before symptoms appear

Goedert et al. 2013, *Nature Reviews Neurology*

Outline

- Parkinson disease: Background
- Changes in Cognition
- Cognitive-Motor Interaction Theoretical Frameworks
- Evidence of Cognitive-Motor Interference
- Rehabilitation for CMI

Executive Dysfunction in PD

- 1. Internal control of attention & action is impaired (Brown & Marsden 1988; Jahanshahi 1995)
- 2. Self-directed formation of strategies is impaired (Taylor 1986)
- 3. Set shifting is impaired with dysregulation of topdown and bottom-up attention control (Taylor & Saint-Cyr 1995; Cools 2001, 2009)
- 4. Planning is impaired with decreased activation of PFC and striatum (Lewis 2003)

Dirnberger and Jahanshahi, *J Neuropsychol,* 2013. 7(2):193-224.

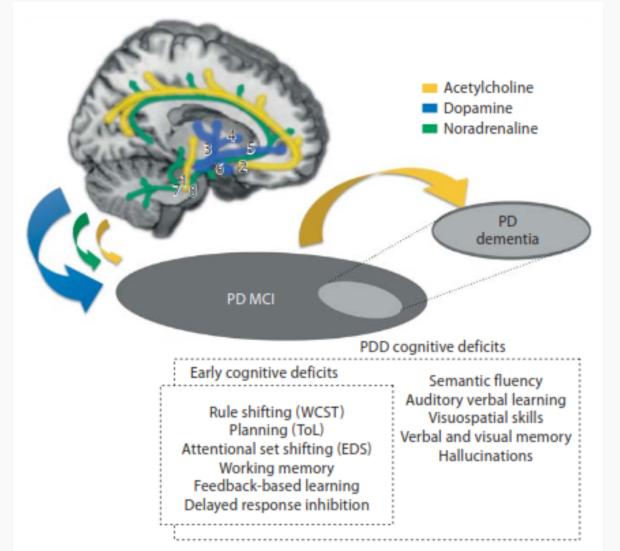
A.T. STILL UNIVERSITY ARIZONA SCHOOL OF HEALTH SCIENCES

ATS

Executive Dysfunction in PD

- 5. Inhibitory control & conflict resolution are impaired, not helped with medication
 - Esp. with more complex tasks, generalized across cog and motor domains (Obeso et al 2011)
- 6. Dual task performance is impaired in motor and cognitive domains (Benecke 1986; Brown 1991,1993,1998)
 - 12% of variance in CMI on walking speed explained by reduced EF (Brixton test) (Rochester 2008)

Dirnberger and Jahanshahi, *J Neuropsychol*, 2013. 7(2):193-224.


Executive Dysfunction in PD

- 18-36% of newly diagnosed PwPD have cognitive impairment (Aarsland 2009; Foltynie 2004)
- Prevalence of Mild Cognitive Impairment (MCI) in nondemented PD is 27% (Litvan 2011, 2012)
- Majority of these (~60%) progress to PD with dementia (PDD) over 4 years, compared with 20% of PD with normal cognition (Williams-Gray 2007)
- PD-MCI predicts development of dementia, which can occur in up to 80% in PwPD over the long term (Aarsland 1996, 2003)

Outline

- Parkinson disease: Background
- Changes in Cognition
- Cognitive-Motor Interaction Theoretical Frameworks
- Evidence of Cognitive-Motor Interference
- Rehabilitation for CMI

Dual Syndrome Hypothesis

Kehagia et al. *Neurodegener Dis,* 2013. 11(2):79-92.

Hypothesis differentiates between 2 Broad Syndromes

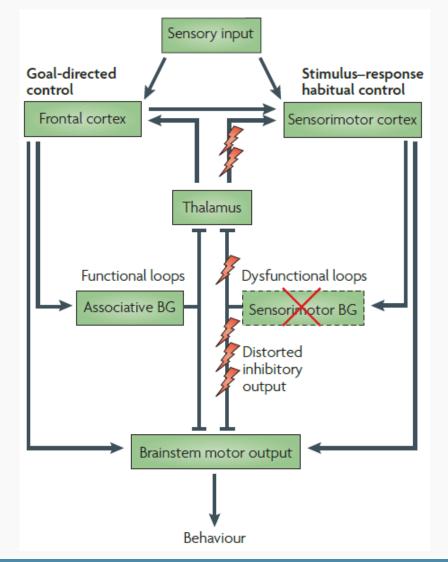
- 1. PD-MCI
 - Tremor-dominant phenotype
 - Fronto-striatal dysfunction
 - Impaired tests of planning, working memory and executive function
 - Respond to dopaminergic dosing but also overdosing effects
- 2. PD-D
 - Postural Instability/Gait Difficulty (PIGD) phenotype
 - Posterior cortical and temporal lobe dysfunction
 - Early deficits in visuospatial and semantic fluency
 - Rapid cognitive decline to dementia
 - Cholinergic treatment may help

Kehagia et al. *Neurodegener Dis,* 2013. 11(2):79-92.

Cognitive Flexibility represented differently in the 2 aspects of EF

- 1. Attentional control (Stroop, TMT, Tower of London, Verbal Fluency, Design Fluency)
- 2. Abstract reasoning (Sorting, 20 Questions, Word Context, Proverbs)
- 45% of PwPD had impaired performance on \geq 1 test
- Impaired group performed significantly worse on attentional control than on abstract reasoning tasks

N = 34 PwPD frontal-type deficits on FAB; 59% H&Y stage 1

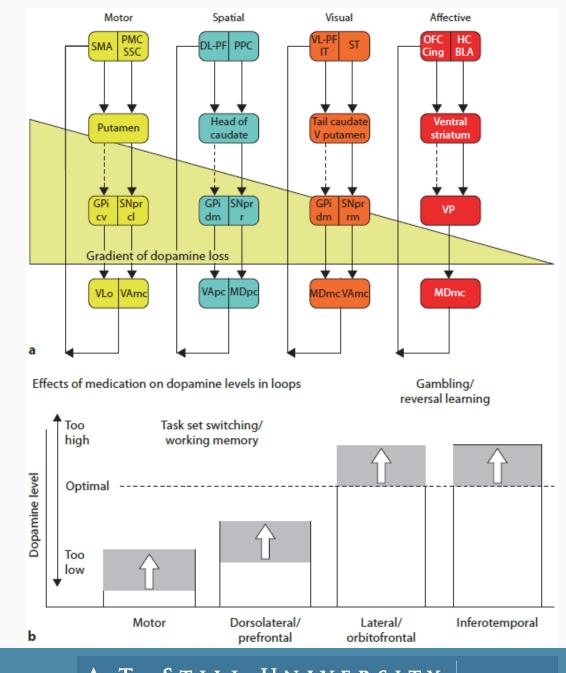

Kudlicka et al., *Dement Geriatr Cogn Disord*, 2013. 36(1-2):50-66.

Models of Executive Function and Attention Control

- 1. Supervisory Attentional System (SAS) (Norman and Shallice 1986)
- 2. Multicomponent Model of Working Memory (Baddeley and Hitch 1974)
- Automatic and Controlled processing in both models
 - Controlled Prefrontal cortex (PFC) analogous to 'central executive' or SAS – allocating attention
 - Automatic Basal ganglia analogous to 'contention schedulers' (Miller and Cohen 2001; Norman and Shallice 1986)

Dirnberger and Jahanshahi, *J Neuropsychol*, A.T. STILL UNIVERSITY 2013. 7(2):193-224. ARIZONA SCHOOL OF HEALTH SCIENCES ATSU

Controlled versus Automatic Processing in PD


Redgrave et al. *Nat Rev Neurosci,* 2010. 11(11):760-772*.*

Gradient of dopamine depletion in PD: Frontostriatal loops

> Dorsal circuits: planning & WM

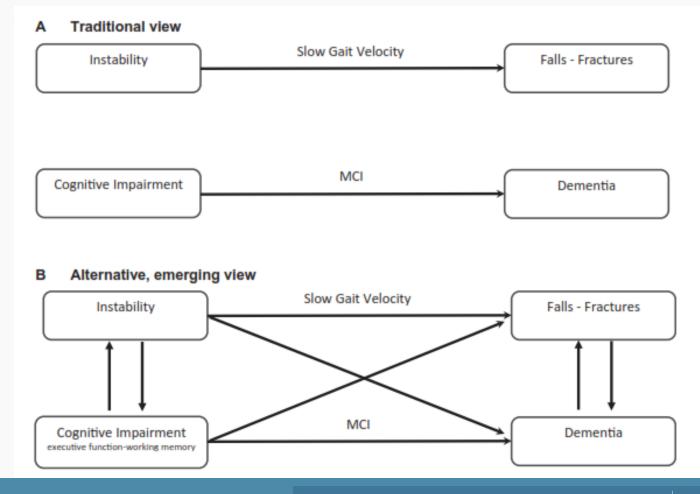
Ventral circuits: reward processing and learning

Behavior after withdrawl of DA in PD

Kehagia et al. *Neurodegener Dis*, 2013. 11(2):79-92.

A.T. STILL UNIVERSITY ARIZONA SCHOOL OF HEALTH SCIENCES

ATSU


Outline

- Parkinson disease: Background
- Changes in Cognition
- Cognitive-Motor Interaction Theoretical Frameworks
- Evidence of Cognitive-Motor Interference
- Rehabilitation for CMI

Emerging evidence that:

1) cognition predicts mobility declines & falls and

2) mobility decline & slow gait predict cognitive decline

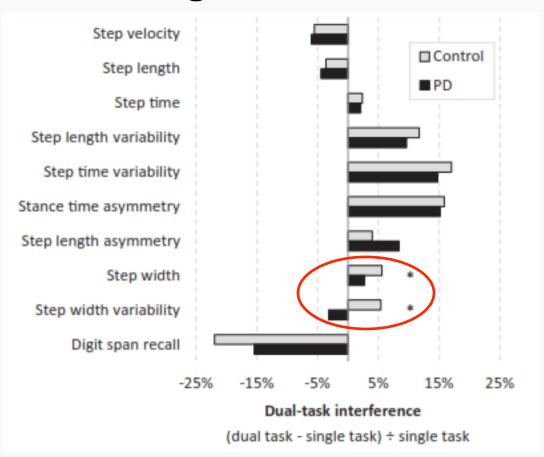
Montero-Odasso, M., J. Verghese, et al. (2012). *J Am Geriatr Soc* 60(11): 2127-2136.

A.T. STILL UNIVERSITY ARIZONA SCHOOL OF HEALTH SCIENCES

ATSU

Fear of Falling is Largest Predictor of Walking Speed – single and dual task

Outcome	Predictor	β	P value	Part correlation	R^2 part correlation
Walking speed (single)	Age	-0.198	0.011*	-0.189	0.04
	Sex	0.219	0.004*	0.214	0.05
	UPDRS-III	-0.180	0.027*	-0.165	0.03
	Freezing	-0.071	0.346	-0.069	0.004
	FES	0.390	< 0.001*	0.316	0.10
	Brixton	-0.113	0.143	-0.108	0.01
	HADS-D	0.199	0.022*	0.170	0.03
		$R^2 = 0.37$; Sig. I	7 Change < 0.001		
Walking speed (dual)	Age	-0.149	0.052	-0.144	0.02
	UPDRS-III	-0.312	0.000*	-0.284	0.08
	Freezing	-0.106	0.168	-0.102	0.01
	FES	0.383	< 0.001*	0.308	0.10
	HADS-D	0.216	0.012*	0.187	0.04
	Dopamine	0.212	0.007*	0.202	0.04
	-	$R^2 = 0.34$; Sig. I	⁷ Change < 0.001		
Interference	UPDRS-III	-0.275	0.002*	-0.275	0.08
	Brixton	0.211	0.015*	0.211	0.05
			⁷ Change < 0.001		


TABLE 3. Regression coefficients of the variables entered into final model for walking speed for each gait outcome

Rochester et al. (2008). *Movement Disorders* 23(16): 2312-2318.

A.T. STILL UNIVERSITY ARIZONA SCHOOL OF HEALTH SCIENCES

ATSU

Dual Task Cost to Postural Control of Gait is greater for PwPD

Control n=184; PD n=121

Rochester, L., B. Galna, et al. (2014). *Neuroscience* 265(0): 83-94.

Dual task interference on gait and cognitive task of digit span recall

Table 3. Results of the ANCOVA to test for dual-task main effects and dual \times task interactions for the whole cohort and the subgroup who performed the dual-task + 1 condition, adjusting for age, sex and order of dual-task presentation. F(p)

Variable	Dual-task main e	ffect	Group \times Dual-task interactions		
	Single versus dual-task	Single versus dual- task + 1	Control versus PD (single and dual-task)	Control versus PD (single and dual-task + 1)	
Step velocity (m s ⁻¹)	26.4 (<0.001)	40.3 (<0.001)	0.094 (0.759)	0.746 (0.390)	
Step length (m)	58.8 (<0.001)	52.8 (<0.001)	1.25 (0.264)	1.04 (0.312)	
Step time (ms)	14.1 (<0.001)	18.1 (<0.001)	0.087 (0.769)	0.005 (0.942)	
Step length variability (m)	2.60 (0.108)	17.0 (<0.001)	0.433 (0.511)	0.425 (0.516)	
Step time variability (ms)	2.76 (0.098)	17.8 (<0.001)	0.021 (0.886)	0.017 (0.896)	
Stance time asymmetry (ms)	1.22 (0.271)	1.16 (0.284)	0.747 (0.388)	0.427 (0.515)	
Step length asymmetry (m)	6.15 (0.014)	5.15 (0.025)	0.003 (0.957)	0.001 (0.983)	
Step width (m)	2.43 (0.120)	6.67 (0.011)	7.61 (0.006)	7.55 (0.007)	
Step width variability (m)	2.34 (0.127)	1.07 (0.304)	9.91 (0.002)	1.59 (0.210)	
Error rate on digit span (% incorrect)	0.731 (0.393)	15.5 (<0.001)	0.348 (0.556)	2.12 (0.149)	

Values in bold and italics font indicate statistically significant findings (p < 0.05).

Rochester, L., B. Galna, et al. (2014). *Neuroscience* 265(0): 83-94.

Spatiotemporal and Variability Measures of Gait are all Impaired by Dual Tasking

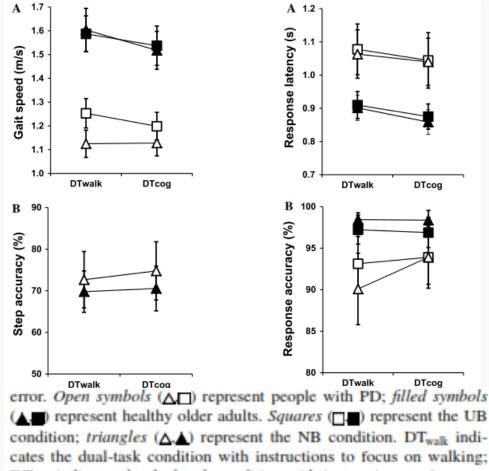
Table 4.

Descriptive Statistics for Gait Spatiotemporal Measures, Gait Variability Measures, and Dual-Task Cost^a

	Single Task		Dual Task			Dual-Task Cost Log ₁₀ (Dual/Single)	
Variable	X (SD)	Range	X (SD)	Range	Р	X (SD)	Range
Stride time (s)	1.1 (0.1)	0.90 to 1.39	1.3 (0.3)	0.92 to 2.44	<mark><.001*</mark>	0.06 (0.01)	-0.03 to 0.24
Stride length (m)	1.2 (0.2)	0.52 to 1.46	1.0 (0.2)	0.32 to 1.44	<.001*	-0.04 (0.008)	-0.20 to 0.01
Step width (m)	0.1 (0.03)	0.03 to 0.13	0.08 (0.03)	0.03 to 0.14	.002*	0.03 (0.01)	-0.21 to 0.17
Swing time (%)	38.2 (2.5)	30.48 to 41.91	35.9 (3.1)	25.65 to 40.37	<mark><.001*</mark>	<mark>-0.03 (0.004</mark>)	-0.10 to 0.01
Walking speed (m/s)	1.0 (0.2)	0.46 to 1.38	0.9 (0.2)	0.26 to 1.22	<mark><.001*</mark>	-0.09 (0.01)	-0.34 to 0.03
Stride time variability (s)	0.03 (0.02)	0.01 to 0.10	0.08 (0.1)	0.02 to 0.67	.01*	0.32 (0.07)	-0.36 to 1.54
S <u>tride length variability (m)</u>	0.04 (0.02)	0.02 to 0.12	0.05 (0.04)	0.02 to 0.22	.06	0.06 (0.04)	-0.55 to 0.52
Step width variability (m)	0.4 (0.2)	0.09 to 1.16	0.3 (0.1)	0.10 to 0.78	<.001*	-0.10 (0.02)	-0.45 to 0.23
Swing time variability (%)	0.04 (0.02)	0.02 to 0.12	0.06 (0.05)	0.02 to 0.28	.02*	0.14 (0.04)	-0.28 to 0.97

^a Asterisk denotes significance.

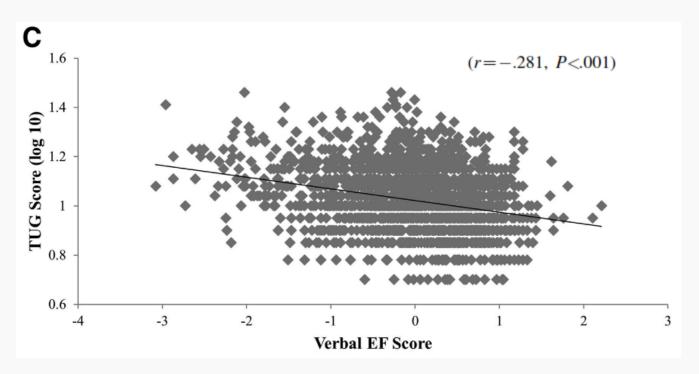
PD n=35


Stegemoller et al. (2014). *Phys Ther* 94(6): 757-766.

Different control mechanisms for Temporal and Postural aspects of gait

- Stride length and gait speed (temporal aspects) were associated with processing speed measures
- Step width variability (postural aspect) was significantly associated with executive function and attention measures.
- These associations were affected differently by dual-tasking
 - only dual task cost to stride length was associated with processing speed
- Slowed overall processing may indicate shared system underlying gait and cognition

Stegemoller et al. (2014). *Phys Ther* 94(6): 757-766.


For PwPD the ability to change walking as instructed depends on task complexity

cates the dual-task condition with instructions to focus on walking; DT_{cog} indicates the dual-task condition with instructions to focus on the cognitive task

Kelly, V. and A. Shumway-Cook (2014). *Exp Brain Res* 232(1): 263-271.

Slower TUG and worse Verbal EF are associated

Verbal Executive Function:

- Verbal fluency Word generation (animals)
- Verbal Working Memory immedediate & delayed recall

Stegemöller et al. (2014). *Arch Phys Med Rehab* 95(4): 649-655.

Timed Up and Go performance and Verbal Executive Function performance predict Quality of Life measures

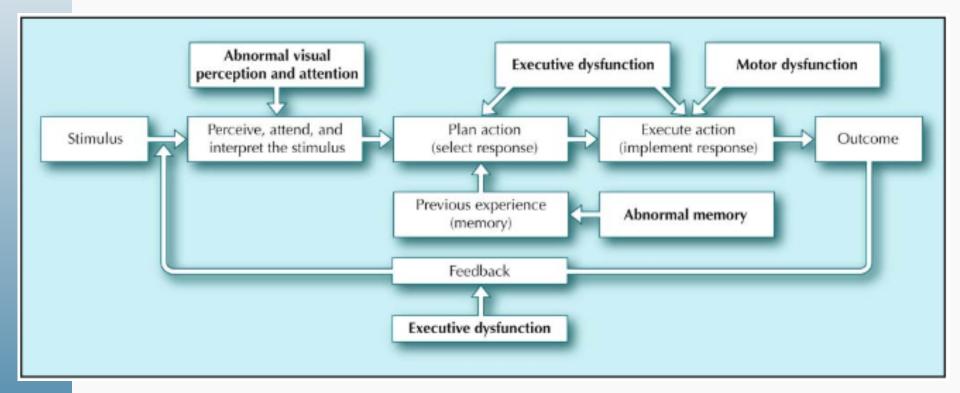
Correlation Coefficients				Regression Model					
	TUC	Score	EF S	Score	TUG Score EF			Score	
PDQ-39 Domains	r	Р	r	Р	Adjusted R ²	β	Р	β	Р
Mobility	.37	<.001	22	<.001	.26 🔶	.27	<.001	06	.004
ADL	.27	<.001	19	<.001	.16 🔶	.19	<.001	07	.001
Emotion	.17	<.001	10	<.001	.04	.14	<.001	03	.141
Stigma	.04	.074	.01	.631	Not entered	Not	entered	Not	entered
Social	.09	<.001	07	.003	.05	.05	.044	01	.808
Cognition	.24	<.001	24	<.001	.11 🔶	.16	<.001	16	<.001
Communication	.20	<.001	18	<.001	.13 🔶	.12	<.001	08	<.001
Pain	.16	<.001	01	.534	.05	.13	<.001	Not	entered

Abbreviation: ADL, activities of daily living.

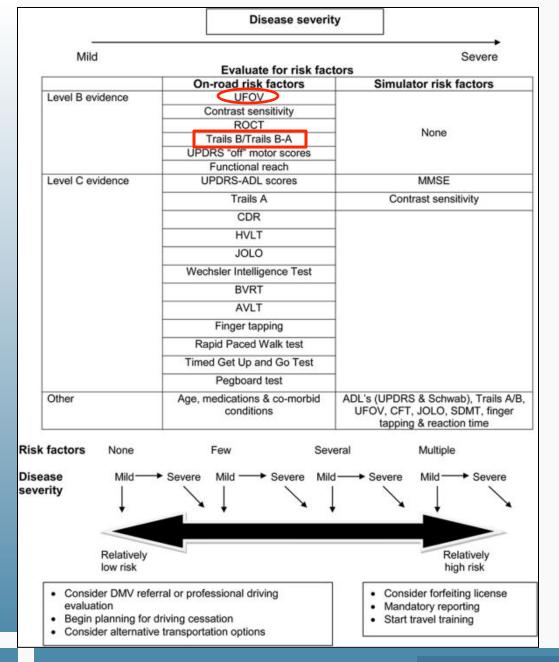
Stegemöller et al. (2014). *Arch Phys Med Rehab* 95(4): 649-655.

Driving and PD

- Car accidents 2 to 5 times higher for PwPD
- Approach traffic signals more slowly, yet decelerate later and fail to stop before entering the intersection
- Impaired in navigating curves, steering accuracy, speed adaptation, maintaining constant lane position and lane changing
- Increased reaction times to brake and steer
- Greater decline in driving skills with a concurrent auditory task


A.T. STILL UNIVERSITY

ARIZONA SCHOOL OF HEALTH SCIENCES


ATSI

Stolwyk et al. (2006). *Movement Disorders* 21(12): 2096-2100; Klimkeit et al. (2009). *Neurosci Biobehav Rev* 33(3): 223-231.

Cognitive - Motor Dysfunction Impacts Information Processing for Driving

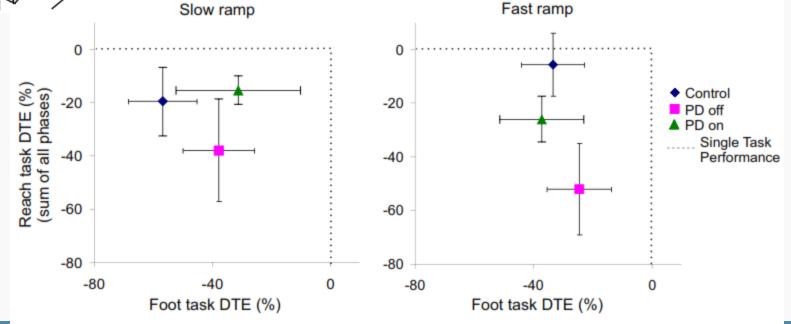
Uc and Rizzo (2008). *Curr Neurol Neurosci* 8(5): 377-383.

Hierarchy of Risk Factors for driving in PD

N = 55; H&Y stage 2&3. Rapid Pace Walk

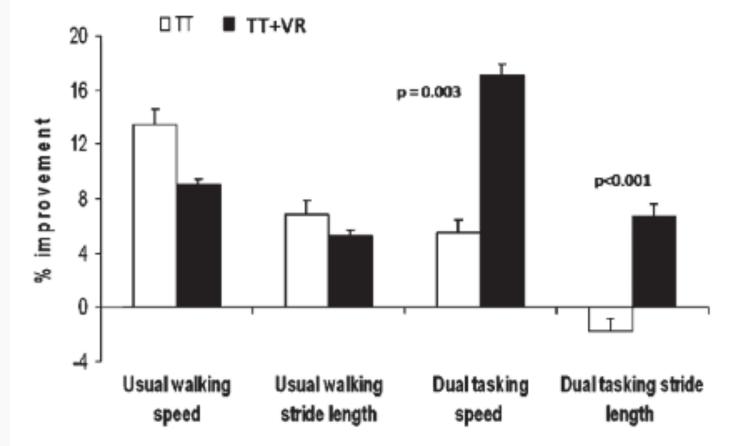
- Cutoff ≥6 s
- Sensitivity 71%
- Specificity 78%

ADL = activities of daily living; AVLT = Auditory Verbal Learning Test; BVRT = Benton Visual Retention Task; CDR = Clinical Dementia Rating Scale; DMV = Department of Motor Vehicles; MMSE = Mini-Mental State Examination; ROCT = Rey-Osterrieth Complex Figure Test; HVLT = Hopkins Verbal Learning Test; JOLO = Judgment of Line Orientation; SDMT = Symbol Digit Modalities Test; UFOV = Useful Field of View.


Crizzle et al. (2012). *Neurology* 79(20):2067-2074.

Dual Task Costs to Arm task and Foot task differ between PwPD and Controls

Trade-Off Between Arm and Foot Tasks


A.T. STILL UNIVERSITY ARIZONA SCHOOL OF HEALTH SCIENCES

ATSU

Outline

- Parkinson disease: Background
- Changes in Cognition
- Cognitive-Motor Interaction Theoretical Frameworks
- Evidence of Cognitive-Motor Interference
- Rehabilitation for CMI

Dual task performance improvement greater after Virtual Reality training on Treadmill then TT alone (3x/wk x 6 weeks)

Mirelman et al. (2011). *J Gerontol A Biol Sci Med Sci* 66A(2):234–240.

A.T. STILL UNIVERSITY ARIZONA SCHOOL OF HEALTH SCIENCES

ATSU

Training improved all aspects of gait, most retained after 1 month

	Table 2. T	Fraining Effects on Gait Measures	1 month	
Test Condition	Pretraining	Posttraining	Follow-Up	p Value
Usual gait				
Speed (m/s)	1.16 ± 0.18	$1.26 \pm 0.20*$	$1.28 \pm 0.19^{\dagger}$.006
Stride time (s)	1.08 ± 0.07	$1.04 \pm 0.05*$	1.04 ± 0.09	.021
Stride length (cm)	123.08 ± 17.22	$129.78 \pm 18.20*$	133.18 ± 15.65† <	.043
Dual-task gait				
Speed (m/s)	1.01 ± 0.23	$1.17 \pm 0.15*$	1.13 ± 0.17	.032
Stride time (s)	1.15 ± 0.11	$1.10 \pm 0.07*$	$1.08 \pm 0.09^{\dagger}$.016
Stride length (cm)	113.07 ± 23.70	121.31 ± 24.21	126.32 ± 15.88†	.046
Gait during endurance testing				
Speed (m/s)	1.01 ± 0.18	$1.16 \pm 0.18*$	$1.13 \pm 0.16^{\dagger}$.004
Stride time (s)	1.13 ± 0.24	$1.04 \pm 0.07*$	1.06 ± 0.13	.246
Obstacle negotiation				
Speed (m/s)	0.96 ± 0.19	$1.17 \pm 0.22*$	1.17 ± 0.20 [†]	.001
Stride time (s)	1.10 ± 0.09	$1.05 \pm 0.07*$	1.06 ± 0.10	.232
Stride length (cm)	147.97 ± 16.97	160.66 ± 17.79*	161.46 ± 17.47†	.019

Notes: p Values in the right column are for the overall repeated measures analysis of variance models.

* Significant immediate effects at posttraining.

[†] Significant retention effects as compared with baseline evaluation analyzed in post hoc analysis.

Mirelman et al. (2011). J Gerontol A Biol Sci Med Sci 66A(2):234–240. A.T. STILL UNIVERSITY ARIZONA SCHOOL OF HEALTH SCIENCES ATSU

Training improved cognitive tasks and reduced dual task cost by 56% -Clinical improvements retained

Table 3.	Training Effects on Cogni	1 month		
	Pretraining	Posttraining	Follow-Up	<i>p</i> Value
Cognitive				
Number of errors made during serial subtraction	1.5 ± 1.8	1.0 ± 1.2	0.8 ± 1.2	.16
Dual-task cost	13.9 ± 14.8	$6.9 \pm 8.4*$	12.8 ± 7.6	.05
Trail Making Test A (s)	69.0 ± 15.9	$57.2 \pm 11.9^{*}$	_	.003
Trail Making Test B (s)	141.4 ± 34.9	$120.4 \pm 18.2*$	_	.05
Clinical				
UPDRS motor —part III	26.5 ± 7.6	$23.5 \pm 6.6*$	24.7 ± 7.1 [†]	.02
Four Square Step Test (s)	13.3 ± 2.5	$11.6 \pm 1.6*$	11.9 ± 1.6†	
Quality of life (PDQ-39)	27.4 ± 15.9	$19.4 \pm 13.6*$	23.6 ± 14.5	.04

Notes: *p* Values in the right column are for the overall repeated measures analysis of variance models. PDQ = Parkinson's disease quality of life questionnaire; UPDRS = Unified Parkinson's Disease Rating Scale.

* Significant immediate effects at posttraining.

[†] Significant retention effects as compared with baseline evaluation as analyzed in post hoc analysis.

Mirelman et al. (2011). *J Gerontol A Biol Sci Med Sci* 66A(2):234–240.

Thank you