Kirksville College of Osteopathic Medicine
Apply to ATSU Now
KCOM Student

Faculty and Staff

Scholarly Activity Home | List of Authors | Publications | Presentations & Abstracts
Professional Presentations e.g., CME | Grants Funded | Honors & Recognition

Publications of Neil J. Sargentini, Ph.D.

 

 

33. Lee MC, Franco M, Vargas DM, Hudman DA, White SJ, Fowler RG, Sargentini NJ. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation. Mutat Res. 2014 Mar 20;763-764C:19-27. doi:10.1016/j.mrfmmm. 2014.03.003. [Epub ahead of print] PubMed
32. Ruhlen RL, Snider EJ, Sargentini NJ, Worthington BD [Student], Singh VK, Pazdernik VM, Johnson JC, Degenhardt BF. Influence of Manual Therapy on Functional Mobility After Joint Injury in a Rat Model. J Am Osteopath Assoc. 2013 Oct;113(10):738-752. PubMed
31.

Hudman DA, Sargentini NJ. Resazurin-based assay for screening bacteria for
radiation sensitivity. Springerplus. 2013; 2(1):55. Epub 2013 Feb 16. PubMed

30. Chamberlain NR, Stuart MK, Singh VK, Sargentini NJ. Utilization of case presentations in medical microbiology to enhance relevance of basic science for medical students. Med Educ Online. 2012;17. doi: 10.3402/meo.v17i0.15943. Epub 2012 Mar 13. PubMed
29.

Stuart MK, Richardson NC, Singh VK, Sargentini NJ. Monoclonal Antibodies Against RadA/Sms Protein. Hybridoma (Larchmt). 2012 Feb;31(1):75. PubMed

28.
Richardson NC, Sargentini NJ, Singh VK, Stuart MK. Monoclonal antibodies against the Escherichia coli DNA repair protein RadA/Sms. Hybridoma (Larchmt). 2012 Feb;31(1):25-31. PubMed
27.
Lockwood MD, Tucker-Potter S, Sargentini NJ. Curricular analysis of competency-based osteopathic medical education: application of a matrix for quality enhancement to a standardized patient encounter example. J Am Osteopath Assoc. 2009 Sep;109(9):486-500. PubMed
26.
Song Y, Sargentini NJ. Escherichia coli DNA repair genes radA and sms are the same gene. J Bacteriol 1996 Aug;178(16):5045-8 PubMed
25.
Sargentini NJ, Smith KC. DNA sequence analysis of spontaneous and gamma-radiation (anoxic)-induced lacId mutations in Escherichia coli umuC122::Tn5: differential requirement for umuC at G.C vs. A.T sites and for the production of transversions vs. transitions. Mutat Res 1994 Dec 1;311(2):175-89 PubMed
24.
Sargentini NJ, Smith KC. DNA sequence analysis of gamma-radiation (anoxic)-induced and spontaneous lacId mutations in Escherichia coli K-12. Mutat Res 1994 Sep 1;309(2):147-63 PubMed
23.
Sargentini NJ, Smith KC. Involvement of RecB-mediated (but not RecF-mediated) repair of DNA double-strand breaks in the gamma-radiation production of long deletions in Escherichia coli. Mutat Res 1992 Jan;265(1):83-101 PubMed
22.
Sargentini NJ, Smith KC. Role of ruvAB genes in UV- and gamma-radiation and chemical mutagenesis in Escherichia coli. Mutat Res 1989 Nov;215(1):115-29 PubMed
21.
Sargentini NJ, Smith KC. Mutational spectrum analysis of umuC-independent and umuC-dependent gamma-radiation mutagenesis in Escherichia coli. Mutat Res 1989 Apr;211(2):193-203 PubMed
20.
Sargentini NJ, Smith KC. Genetic and phenotypic analyses indicating occurrence of the recN262 and radB101 mutations at the same locus in Escherichia coli. J Bacteriol 1988 May;170(5):2392-4 PubMed
19.
Sargentini NJ, Smith KC. Ionizing and ultraviolet radiation-induced reversion of sequenced frameshift mutations in Escherichia coli: a new role for umuDC suggested by delayed photoreactivation. Mutat Res 1987 Jul;179(1):55-63 PubMed
18.
Sargentini NJ, Smith KC. Quantitation of the involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of X-ray-induced DNA double-strand breaks in Escherichia coli. Radiat Res 1986 Jul;107(1):58-72PubMed
17.
Sargentini NJ, Smith KC. Mutagenesis by normal metabolites in Escherichia coli: phenylalanine mutagenesis is dependent on error-prone DNA repair. Mutat Res 1986 Jul;161(2):113-8 PubMed
16.
Sargentini NJ, Smith KC. Role of the radB gene in postreplication repair in UV-irradiated Escherichia coli uvrB. Mutat Res 1986 Jul;166(1):17-22 PubMed
15.
Felzenszwalb I, Sargentini NJ, Smith KC. Escherichia coli radC is deficient in the recA-dependent repair of X-ray-induced DNA strand breaks. Radiat Res 1986 May;106(2):166-70 PubMed
14.
Sargentini NJ, Smith KC. Characterization and quantitation of DNA strand breaks requiring recA-dependent repair in X-irradiated Escherichia coli. Radiat Res 1986 Feb;105(2):180-6 PubMed
13.
Smith KC, Sargentini NJ. Metabolically-produced 'UV-like' DNA damage and its role in spontaneous mutagenesis. Photochem Photobiol 1985 Dec;42(6):801-3 PubMed
12.
Sargentini NJ, Smith KC. Growth-medium-dependent repair of DNA single-strand and double-strand breaks in X-irradiated Escherichia coli. Radiat Res 1985 Oct;104(1):109-15 PubMed
11.
Sargentini NJ, Smith KC. Spontaneous mutagenesis: the roles of DNA repair, replication, and recombination. Mutat Res 1985 Jul;154(1):1-27 PubMed
10.
Sargentini NJ, Smith KC. umuC-dependent and umuC-independent gamma- and UV-radiation mutagenesis in Escherichia coli. Mutat Res 1984 Aug;128(1):1-9 PubMed
9.
Felzenszwalb I, Sargentini NJ, Smith KC. Characterization of a new radiation-sensitive mutant, Escherichia coli K-12 radC102. Radiat Res 1984 Mar;97(3):615-25 PubMed
8.
Sharma RC, Sargentini NJ, Smith KC. New mutation (mmrA1) in Escherichia coli K-12 that affects minimal medium recovery and postreplication repair after UV irradiation. J Bacteriol 1983 May;154(2):743-7 PubMed
7.
Sargentini NJ, Smith KC. Characterization of an Escherichia coli mutant (radB101) sensitive to gamma and uv radiation, and methyl methanesulfonate. Radiat Res 1983 Mar;93(3):461-78 PubMed
6.
Sargentini NJ, Diver WP, Smith KC. The effect of growth conditions on inducible, recA-dependent resistance to X rays in Escherichia coli. Radiat Res 1983 Feb;93(2):364-80 PubMed
5.
Sargentini NJ, Bockrath RC, Smith KC. Three mechanisms for ultraviolet radiation mutagenesis in Escherichia coli K-12 uvrB5: specificity for the production of back and suppressor mutants. Mutat Res 1982 Dec;106(2):217-24 PubMed
4.
Diver WP, Sargentini NJ, Smith KC. A mutation (radA100) in Escherichia coli that selectively sensitizes cells grown in rich medium to x- or u.v.-radiation, or methyl methanesulphonate. Int J Radiat Biol Relat Stud Phys Chem Med 1982 Sep;42(3):339-46 PubMed
3.
Sargentini NJ, Smith KC. Much of spontaneous mutagenesis in Escherichia coli is due to error-prone DNA repair: implications for spontaneous carcinogenesis. Carcinogenesis 1981;2(9):863-72 PubMed
2.
Sargentini NJ, Smith KC. Involvement of genes uvrD and recB in separate mutagenic deoxyribonucleic acid repair pathways in Escherichia coli K-12 uvrB5 and B/r uvrA155. J Bacteriol 1980 Jul;143(1):212-20 PubMed
1.
Smith KC, Sargentini NJ. Multiple, independent components of ultraviolet radiation mutagenesis in Escherichia coli K-12 uvrB5. J Bacteriol 1979 Nov;140(2):436-44 PubMed
A.
Sargentini NJ (Ph.D. Thesis). On the genetic control of radiation mutagenesis in Escherichia coli. Stanford University. 1980
B.
Sargentini NJ (Masters Thesis). Aspects of growth of Bacillus pumilus BPC1 on various carbon-energy sources. California State University-Fresno. 1973
   
Reviews Return to top
1.
Sargentini NJ, Smith KC. Spontaneous mutagenesis: the roles of DNA repair, replication, and recombination. Mutat Res 1985 Jul;154(1):1-27 PubMed
 
Articles in Proceedings of Symposia Return to top
5.
umuC-independent, recA-dependent mutagenesis. Smith KC, Sargentini NJ. In: Photobiology (Riklis E, ed.), pp. 169-176, Plenum Press, New York (1991)
4.
Mechanisms of spontaneous mutagenesis: implication for spontaneous carcinogenesis. Smith KC, Sargentini NJ. In: Radiation Carcinogenesis and DNA Alterations (Burns FJ, Upton AC, Silini G, ed.), pp. 359-371, Plenum Press, New York (1986)
3.
New DNA repair systems and new insights on old systems in Escherichia coli. Smith KC, Sargentini NJ, Sharma RC, Wang TV. In: Radiation Carcinogenesis and DNA Alterations (Burns FJ, Upton AC, Silini G, ed.), pp. 499-509, Plenum Press, New York (1986)
2.
Escherichia coli K-12 radC102: Isolation, characterization and interaction with different mutations. Felzenszwalb I, Sargentini NJ, Smith KC. In: Cellular Responses to DNA Damage (Friedberg EC, Bridges BA, ed.), pp. 409-416, Alan R. Liss, Inc., New York
(1983)
1.

Excision repair and mutagenesis are complex processes. Smith KC, Youngs DA, Van der Schueren E, Carlson KM, Sargentini NJ. In: DNA Repair Mechanisms (Hanawalt PC, Friedberg EC, Fox CF, ed.), pp. 247-250, Academic Press, New York (1978)